The impact of hormonal contraceptives on skeletal muscle hypertrophy

Nevena Markov ,
Nevena Markov
Contact Nevena Markov

Faculty of Health Sciences, University of Primorska , Izola , Slovenia

Matevž Arčon
Matevž Arčon

Faculty of Health Sciences, University of Primorska , Izola , Slovenia

Editor: Danilo Radanović

Published: 18.07.2025.

Volume 17, Issue 2 (2025)

pp. 65-79;

https://doi.org/10.31382/preprint.000103

Abstract

Female reproductive hormones such as progesterone and estrogen play an important role in the body as they orchestrate functions of numerous cells including skeletal muscle cells. Onset of menses marks the beginning of reproductive life, whereas menopause marks its cessation. We distinguish three phases of the 28-day menstrual cycle namely follicular, ovulatory and luteal phases. The follicular phase is characterised by marked increases in estrogen, which triggers ovulation. During this phase, estrogen peaks, whereas progesterone levels are low. Following ovulation, the luteal phase commences marked by high progesterone levels and reduced estrogen. Indeed, these periodic fluctuations in reproductive hormones may affect rates of muscle protein synthesis and hence hinder sought adaptations such as skeletal muscle hypertrophy in female athletes. With the introduction of hormonal contraceptives, female athletes were able to have ameliorate the negative effects of the menstrual cycle by reducing menstrual cramping and bleeding. Hormonal contraceptives are constituted of a single or multiple synthetic hormones namely estrogen and progestin. Nevertheless, the impact of hormonal contraceptives on skeletal muscle hypertrophy remains elusive. In this review, we aim to present the potential implications of hormonal contraceptives on skeletal muscle hypertrophy.

Keywords

References

Ahmed, R. E., Tokuyama, T., Anzai, T., Chanthra, N., & Uosaki, H. (2022). Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1864). https://doi.org/10.1098/rstb.2021.0325
Ansdell, P., Brownstein, C. G., Škarabot, J., Hicks, K. M., Simoes, D. C. M., Thomas, K., Howatson, G., Hunter, S. K., & Goodall, S. (2019). Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. Journal of Applied Physiology, 126(6), 1701–1712. https://doi.org/10.1152/japplphysiol.01041.2018
Athnaiel, O., Cantillo, S., Paredes, S., & Knezevic, N. N. (n.d.). The Role of Sex Hormones in Pain-Related Conditions. International Journal of Molecular Sciences, 24(3), 1866. https://doi.org/10.3390/ijms24031866
Baltgalvis, K. A., Greising, S. M., Warren, G. L., & Lowe, D. A. (n.d.). Estrogen Regulates Estrogen Receptors and Antioxidant Gene Expression in Mouse Skeletal Muscle. PLoS ONE, 5(4), e10164. https://doi.org/10.1371/journal.pone.0010164
Barros, R. P. A., & Gustafsson, J.-Å. (2011). Estrogen Receptors and the Metabolic Network. Cell Metabolism, 14(3), 289–299. https://doi.org/10.1016/j.cmet.2011.08.005
BEIDLEMAN, B. A., ROCK, P. B., MUZA, S. R., FULCO, C. S., GIBSON, L. L., KAMIMORI, G. H., & CYMERMAN, A. (2002). Substrate oxidation is altered in women during exercise upon acute altitude exposure. Medicine & Science in Sports & Exercise, 34(3), 430–437. https://doi.org/10.1097/00005768-200203000-00008
Bermon, S., Garnier, P. Y., Hirschberg, A. L., Robinson, N., Giraud, S., Nicoli, R., Baume, N., Saugy, M., Fénichel, P., Bruce, S. J., Henry, H., Dollé, G., & Ritzen, M. (2014). Serum Androgen Levels in Elite Female Athletes. The Journal of Clinical Endocrinology & Metabolism, 99(11), 4328–4335. https://doi.org/10.1210/jc.2014-1391
Bernardes, R. P., & Radomski, M. W. (1998). Growth hormone responses to continuous and intermittent exercise in females under oral contraceptive therapy. European Journal of Applied Physiology, 79(1), 24–29. https://doi.org/10.1007/s004210050468
Cano, A., Ventura, L., Martinez, G., Cugusi, L., Caria, M., Deriu, F., & Manca, A. (2022). Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. European Journal of Applied Physiology, 122(1), 29–70. https://doi.org/10.1007/s00421-021-04802-5
Cardinale, D. A., Larsen, F. J., Schiffer, T. A., Morales-Alamo, D., Ekblom, B., Calbet, J. A. L., Holmberg, H.-C., & Boushel, R. (n.d.). Superior Intrinsic Mitochondrial Respiration in Women Than in Men. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01133
Colenso-Semple, L. M., D’Souza, A. C., Elliott-Sale, K. J., & Phillips, S. M. (n.d.). Current evidence shows no influence of women’s menstrual cycle phase on acute strength performance or adaptations to resistance exercise training. Frontiers in Sports and Active Living, 5. https://doi.org/10.3389/fspor.2023.1054542
Cooper, D. B., & Patel, P. (n.d.). Oral Contraceptive Pills:StatPearls. /.
Critchley, H. O. D., Babayev, E., Bulun, S. E., Clark, S., Garcia-Grau, I., Gregersen, P. K., Kilcoyne, A., Kim, J.-Y. J., Lavender, M., Marsh, E. E., Matteson, K. A., Maybin, J. A., Metz, C. N., Moreno, I., Silk, K., Sommer, M., Simon, C., Tariyal, R., Taylor, H. S., … Griffith, L. G. (2020). Menstruation: science and society. American Journal of Obstetrics and Gynecology, 223(5), 624–664. https://doi.org/10.1016/j.ajog.2020.06.004
Dalgaard, L. B., Dalgas, U., Andersen, J. L., Rossen, N. B., Møller, A. B., Stødkilde-Jørgensen, H., Jørgensen, J. O., Kovanen, V., Couppé, C., Langberg, H., Kjær, M., & Hansen, M. (n.d.). Influence of Oral Contraceptive Use on Adaptations to Resistance Training. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00824
DAM, T. V., DALGAARD, L. B., SEVDALIS, V., BIBBY, B. M., JANSE DE JONGE, X., GRAVHOLT, C. H., & HANSEN, M. (2022). Muscle Performance during the Menstrual Cycle Correlates with Psychological Well-Being, but Not Fluctuations in Sex Hormones. Medicine & Science in Sports & Exercise, 54(10), 1678–1689. https://doi.org/10.1249/mss.0000000000002961
Damas, F., Libardi, C. A., & Ugrinowitsch, C. (2018). The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. European Journal of Applied Physiology, 118(3), 485–500. https://doi.org/10.1007/s00421-017-3792-9
Davis, E., & Sparzak, P. B. (2024). Abnormal Uterine Bleeding:StatPearls.
de Castro Coelho, F., & Barros, C. (2019). The Potential of Hormonal Contraception to Influence Female Sexuality. International Journal of Reproductive Medicine, 2019, 1–9. https://doi.org/10.1155/2019/9701384
de Freitas, M. C., Gerosa-Neto, J., Zanchi, N. E., Lira, F. S., & Rossi, F. E. (2017). Role of metabolic stress for enhancing muscle adaptations: Practical applications. World Journal of Methodology, 7(2), 46. https://doi.org/10.5662/wjm.v7.i2.46
de Jonge, X. A. K. J., Boot, C. R. L., Thom, J. M., Ruell, P. A., & Thompson, M. W. (2001). The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. The Journal of Physiology, 530(1), 161–166. https://doi.org/10.1111/j.1469-7793.2001.0161m.x
Devoto, L., Kohen, P., Muñoz, A., & Strauss, J. F. (2009). Human corpus luteum physiology and the luteal-phase dysfunction associated with ovarian stimulation. Reproductive BioMedicine Online, 18, S19–S24. https://doi.org/10.1016/s1472-6483(10)60444-0
Dieli-Conwright, C. M., Spektor, T. M., Rice, J. C., Sattler, F. R., & Schroeder, E. T. (2009). Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. Journal of Applied Physiology, 107(5), 1381–1388. https://doi.org/10.1152/japplphysiol.00590.2009
Dodd, K. M., & Tee, A. R. (2012). Leucine and mTORC1: a complex relationship. American Journal of Physiology-Endocrinology and Metabolism, 302(11), E1329–E1342. https://doi.org/10.1152/ajpendo.00525.2011
Draper, C. F., Duisters, K., Weger, B., Chakrabarti, A., Harms, A. C., Brennan, L., Hankemeier, T., Goulet, L., Konz, T., Martin, F. P., Moco, S., & van der Greef, J. (n.d.). Menstrual cycle rhythmicity: metabolic patterns in healthy women. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32647-0
D’Souza, A. C., Wageh, M., Williams, J. S., Colenso-Semple, L. M., McCarthy, D. G., McKay, A. K. A., Elliott-Sale, K. J., Burke, L. M., Parise, G., MacDonald, M. J., Tarnopolsky, M. A., & Phillips, S. M. (2023). Menstrual cycle hormones and oral contraceptives: a multimethod systems physiology-based review of their impact on key aspects of female physiology. Journal of Applied Physiology, 135(6), 1284–1299. https://doi.org/10.1152/japplphysiol.00346.2023
Ekenros, L., Papoutsi, Z., Fridén, C., Dahlman Wright, K., & Lindén Hirschberg, A. (2017). Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiologica, 219(2), 486–493. https://doi.org/10.1111/apha.12757
Elliott-Sale, K. J., McNulty, K. L., Ansdell, P., Goodall, S., Hicks, K. M., Thomas, K., Swinton, P. A., & Dolan, E. (2020). The Effects of Oral Contraceptives on Exercise Performance in Women: A Systematic Review and Meta-analysis. Sports Medicine, 50(10), 1785–1812. https://doi.org/10.1007/s40279-020-01317-5
Elliott-Sale, K. J., Minahan, C. L., de Jonge, X. A. K. J., Ackerman, K. E., Sipilä, S., Constantini, N. W., Lebrun, C. M., & Hackney, A. C. (2021). Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Medicine, 51(5), 843–861. https://doi.org/10.1007/s40279-021-01435-8
Elliott-Sale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B., & Ackerman, K. E. (2018). Endocrine Effects of Relative Energy Deficiency in Sport. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 335–349. https://doi.org/10.1123/ijsnem.2018-0127
Enns, D. L., & Tiidus, P. M. (2010). The Influence of Estrogen on Skeletal Muscle. Sports Medicine, 40(1), 41–58. https://doi.org/10.2165/11319760-000000000-00000
Esbjörnsson, M., Sylvén, C., Holm, I., & Jansson, E. (1993). Fast Twitch Fibres May Predict Anaerobic Performance in Both Females and Males. International Journal of Sports Medicine, 14(05), 257–263. https://doi.org/10.1055/s-2007-1021174
Evans, G., & Sutton, E. L. (2015). Oral Contraception. Medical Clinics of North America, 99(3), 479–503. https://doi.org/10.1016/j.mcna.2015.01.004
Gharahdaghi, N., Phillips, B. E., Szewczyk, N. J., Smith, K., Wilkinson, D. J., & Atherton, P. J. (n.d.). Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.621226
Green, S. A., & Graham, B. M. (2022). Symptom fluctuation over the menstrual cycle in anxiety disorders, PTSD, and OCD: a systematic review. Archives of Women’s Mental Health, 25(1), 71–85. https://doi.org/10.1007/s00737-021-01187-4
Guo, H.-Y., Dong, X.-H., & Zhang, J.-H. (2005). Hormone levels at different menstrual cycle phases and changes of athletic performance in female athletes. Chinese Journal of Tissue Engineering, 53, 188–190.
Hackney. (1999). Influence of oestrogen on muscle glycogen utilization during exercise. Acta Physiologica Scandinavica, 167(3), 273–274. https://doi.org/10.1046/j.1365-201x.1999.00605.x
Hansen, M., Langberg, H., Holm, L., Miller, B. F., Petersen, S. G., Doessing, S., Skovgaard, D., Trappe, T., & Kjaer, M. (2011). Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women. Scandinavian Journal of Medicine & Science in Sports, 21(1), 62–72. https://doi.org/10.1111/j.1600-0838.2009.01002.x
Herbison, A. E. (2016). Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nature Reviews Endocrinology, 12(8), 452–466. https://doi.org/10.1038/nrendo.2016.70
Holesh, J. E., Bass, A. N., & Lord, M. (2024). Physiology, Ovulation:StatPearls.
Holtzman, B., & Ackerman, K. E. (2021). Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sports Medicine, 51(S1), 43–57. https://doi.org/10.1007/s40279-021-01508-8
Hornum, M., Cooper, D. M., Brasel, J. A., Bueno, A., & Sietsema, K. E. (1997). Exercise-induced changes in circulating growth factors with cyclic variation in plasma estradiol in women. Journal of Applied Physiology, 82(6), 1946–1951. https://doi.org/10.1152/jappl.1997.82.6.1946
Hwang, W. J., Lee, T. Y., Kim, N. S., & Kwon, J. S. (n.d.). The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. International Journal of Molecular Sciences, 22(1), 373. https://doi.org/10.3390/ijms22010373
Ihalainen, J. K., Mikkonen, R. S., Ackerman, K. E., Heikura, I. A., Mjøsund, K., Valtonen, M., & Hackney, A. C. (2024). Beyond Menstrual Dysfunction: Does Altered Endocrine Function Caused by Problematic Low Energy Availability Impair Health and Sports Performance in Female Athletes? Sports Medicine, 54(9), 2267–2289. https://doi.org/10.1007/s40279-024-02065-6
Javed, A. A., Mayhew, A. J., Shea, A. K., & Raina, P. (n.d.). Association Between Hormone Therapy and Muscle Mass in Postmenopausal Women. JAMA Network Open, 2(8), e1910154. https://doi.org/10.1001/jamanetworkopen.2019.10154
Jensen, M. D., Martin, M. L., Cryer, P. E., & Roust, L. R. (1994). Effects of estrogen on free fatty acid metabolism in humans. American Journal of Physiology-Endocrinology and Metabolism, 266(6), E914–E920. https://doi.org/10.1152/ajpendo.1994.266.6.e914
Kitson, J. (2022). Benefits and risks of combined hormonal contraception. Prescriber, 33(6), 29–33. https://doi.org/10.1002/psb.1994
Kizilay, F., Emin Kafkas, M., Çağatay Taşkapan, M., Haydar Demirel, A., & Radak, Z. (2024). Impact of differing eccentric-concentric phase durations on muscle damage and anabolic hormones. Isokinetics and Exercise Science, 32(1), 29–39. https://doi.org/10.3233/ies-220078
Klein, D. A., Paradise, S. L., & Reeder, R. M. (2019). Amenorrhea: A Systematic Approach to Diagnosis and Management. American Family Physician, 100(1), 39–48.
Kraemer, R. R., Heleniak, R. J., Tryniecki, J. L., Kraemer, G. R., Okazaki, N. J., & Castracane, V. D. (1995). Follicular and luteal phase hormonal responses to low-volume resistive exercise. Medicine and Science in Sports and Exercise, 27(6), 809–817.
Kraemer, W. J., Nindl, B. C., Volek, J. S., Marx, J. O., Gotshalk, L. A., Bush, J. A., Welsch, J. R., Vingren, J. L., Spiering, B. A., Fragala, M. S., Hatfield, D. L., Ho, J.-Y., Maresh, C. M., Mastro, A. M., & Hymer, W. C. (2008). Influence of oral contraceptive use on growth hormone in vivo bioactivity following resistance exercise: Responses of molecular mass variants. Growth Hormone & IGF Research, 18(3), 238–244. https://doi.org/10.1016/j.ghir.2007.10.001
Krzysztofik, M., Wilk, M., Wojdała, G., & Gołaś, A. (n.d.). Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. International Journal of Environmental Research and Public Health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897
Lamont, L. S., Lemon, P. W., & Bruot, B. C. (1987). Menstrual cycle and exercise effects on protein catabolism. Medicine and Science in Sports and Exercise, 19(2), 106–110.
Loucks, A. B., & Thuma, J. R. (2003). Luteinizing Hormone Pulsatility Is Disrupted at a Threshold of Energy Availability in Regularly Menstruating Women. The Journal of Clinical Endocrinology & Metabolism, 88(1), 297–311. https://doi.org/10.1210/jc.2002-020369
Maya, J., & Misra, M. (2022). The female athlete triad: review of current literature. Current Opinion in Endocrinology, Diabetes & Obesity, 29(1), 44–51. https://doi.org/10.1097/med.0000000000000690
Miro, F., & Aspinall, L. J. (2005). The onset of the initial rise in follicle-stimulating hormone during the human menstrual cycle. Human Reproduction, 20(1), 96–100. https://doi.org/10.1093/humrep/deh551
Mishra, S., Elliott, H., & Marwaha, R. (2024). Premenstrual Dysphoric Disorder: StatPearls.
Molgat-Seon, Y., Dominelli, P. B., Ramsook, A. H., Schaeffer, M. R., Molgat Sereacki, S., Foster, G. E., Romer, L. M., Road, J. D., Guenette, J. A., & Sheel, A. W. (2018). The effects of age and sex on mechanical ventilatory constraint and dyspnea during exercise in healthy humans. Journal of Applied Physiology, 124(4), 1092–1106. https://doi.org/10.1152/japplphysiol.00608.2017
Morton, R. W., Sato, K., Gallaugher, M. P. B., Oikawa, S. Y., McNicholas, P. D., Fujita, S., & Phillips, S. M. (n.d.). Muscle Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01373
Myllyaho, M. M., Ihalainen, J. K., Hackney, A. C., Valtonen, M., Nummela, A., Vaara, E., Häkkinen, K., Kyröläinen, H., & Taipale, R. S. (2021). Hormonal Contraceptive Use Does Not Affect Strength, Endurance, or Body Composition Adaptations to Combined Strength and Endurance Training in Women. Journal of Strength and Conditioning Research, 35(2), 449–457. https://doi.org/10.1519/jsc.0000000000002713
Nedresky, D., & Singh, G. (2024). Physiology, Luteinizing Hormone:StatPearls.
Nuzzo, J. L. (2024). Sex differences in skeletal muscle fiber types: A meta‐analysis. Clinical Anatomy, 37(1), 81–91. https://doi.org/10.1002/ca.24091
Odongo, E., Byamugisha, J., Ajeani, J., & Mukisa, J. (n.d.). Prevalence and effects of menstrual disorders on quality of life of female undergraduate students in Makerere University College of health sciences, a cross sectional survey. BMC Women’s Health, 23(1). https://doi.org/10.1186/s12905-023-02290-7
Oliver, R., & Basit, H. (2024). Embryology, Fertilization:StatPearls.
Oosthuyse, T., & Bosch, A. N. (2010). The Effect of the Menstrual Cycle on Exercise Metabolism. Sports Medicine, 40(3), 207–227. https://doi.org/10.2165/11317090-000000000-00000
Orlowski, M., & Sarao, M. S. (2024). Physiology, Follicle Stimulating Hormone: StatPearls.
Oxfeldt, M., Dalgaard, L. B., Jørgensen, E. B., Johansen, F. T., Dalgaard, E. B., Ørtenblad, N., & Hansen, M. (2020). Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. Journal of Applied Physiology, 129(6), 1355–1364. https://doi.org/10.1152/japplphysiol.00562.2020
Phillips, A., Hahn, D. W., & McGuire, J. L. (1992). Preclinical evaluation of norgestimate, a progestin with minimal androgenic activity. American Journal of Obstetrics and Gynecology, 167(4), 1191–1196. https://doi.org/10.1016/s0002-9378(12)90410-x
Phillips, S. K., Sanderson, A. G., Birch, K., Bruce, S. A., & Woledge, R. C. (1996). Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. The Journal of Physiology, 496(2), 551–557. https://doi.org/10.1113/jphysiol.1996.sp021706
Reddy, D. S., O’Malley, B. W., & Rogawski, M. A. (2005). Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology, 48(1), 14–24. https://doi.org/10.1016/j.neuropharm.2004.09.002
Reif, A., Wessner, B., Haider, P., Tschan, H., & Triska, C. (n.d.). Strength Performance Across the Oral Contraceptive Cycle of Team Sport Athletes: A Cross-Sectional Study. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.658994
Reis, E., Frick, U., & Schmidtbleicher, D. (1995). Frequency Variations of Strength Training Sessions Triggered by the Phases of the Menstrual Cycle. International Journal of Sports Medicine, 16(08), 545–550. https://doi.org/10.1055/s-2007-973052
Roberts, M. D., McCarthy, J. J., Hornberger, T. A., Phillips, S. M., Mackey, A. L., Nader, G. A., Boppart, M. D., Kavazis, A. N., Reidy, P. T., Ogasawara, R., Libardi, C. A., Ugrinowitsch, C., Booth, F. W., & Esser, K. A. (2023). Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiological Reviews, 103(4), 2679–2757. https://doi.org/10.1152/physrev.00039.2022
Roepstorff, C., Thiele, M., Hillig, T., Pilegaard, H., Richter, E. A., Wojtaszewski, J. F. P., & Kiens, B. (2006). Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. The Journal of Physiology, 574(1), 125–138. https://doi.org/10.1113/jphysiol.2006.108720
Romance, R., Vargas, S., Espinar, S., Petro, J. L., Bonilla, D. A., Schöenfeld, B. J., Kreider, R. B., & Benítez-Porres, J. (2019). Oral Contraceptive Use does not Negatively Affect Body Composition and Strength Adaptations in Trained Women. International Journal of Sports Medicine, 40(13), 842–849. https://doi.org/10.1055/a-0985-4373
Russ, D. W., Lanza, I. R., Rothman, D., & Kent‐Braun, J. A. (2005). Sex differences in glycolysis during brief, intense isometric contractions. Muscle & Nerve, 32(5), 647–655. https://doi.org/10.1002/mus.20396
Ruzić, L., Matković, B. R., & Leko, G. (2003). Antiandrogens in hormonal contraception limit muscle strength gain in strength training: Comparison study. Croatian Medical Journal, 44(1), 65–68.
Saei Ghare Naz, M., Farahmand, M., Dashti, S., & Ramezani Tehrani, F. (n.d.). Factors Affecting Menstrual Cycle Developmental Trajectory in Adolescents: A Narrative Review. International Journal of Endocrinology and Metabolism, 20(1). https://doi.org/10.5812/ijem.120438
Sakamaki-Sunaga, M., Min, S., Kamemoto, K., & Okamoto, T. (2016). Effects of Menstrual Phase–Dependent Resistance Training Frequency on Muscular Hypertrophy and Strength. Journal of Strength and Conditioning Research, 30(6), 1727–1734. https://doi.org/10.1519/jsc.0000000000001250
Schaumberg, M. A., Emmerton, L. M., Jenkins, D. G., Burton, N. W., Janse de Jonge, X. A. K., & Skinner, T. L. (2018). Use of Oral Contraceptives to Manipulate Menstruation in Young, Physically Active Women. International Journal of Sports Physiology and Performance, 13(1), 82–87. https://doi.org/10.1123/ijspp.2016-0689
Schiaffino, S., & Reggiani, C. (2011). Fiber Types in Mammalian Skeletal Muscles. Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010
Schoenfeld, B. J. (2010). The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. Journal of Strength and Conditioning Research, 24(10), 2857–2872. https://doi.org/10.1519/jsc.0b013e3181e840f3
Schwartz, J., Katz, S. A., Fegley, R. W., & Tockman, M. S. (1988). Sex and Race Differences in the Development of Lung Function. American Review of Respiratory Disease, 138(6), 1415–1421. https://doi.org/10.1164/ajrccm/138.6.1415
Shah, D., Patil, M., & On behalf of the National PCOS Working Group. (2018). Consensus statement on the use of oral contraceptive pills in polycystic ovarian syndrome women in India. Journal of Human Reproductive Sciences, 11(2), 96. https://doi.org/10.4103/jhrs.jhrs_72_18
Shoupe, D. (1994). New progestins—Clinical experiences: Gestodene. American Journal of Obstetrics and Gynecology, 170(5), 1562–1568. https://doi.org/10.1016/s0002-9378(12)91816-5
Shultz, S. J., Schmitz, R. J., & Beynnon, B. D. (2011). Variations in varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle. Journal of Orthopaedic Research, 29(3), 318–325. https://doi.org/10.1002/jor.21243
Smith, G. I., Yoshino, J., Reeds, D. N., Bradley, D., Burrows, R. E., Heisey, H. D., Moseley, A. C., & Mittendorfer, B. (2014). Testosterone and Progesterone, But Not Estradiol, Stimulate Muscle Protein Synthesis in Postmenopausal Women. The Journal of Clinical Endocrinology & Metabolism, 99(1), 256–265. https://doi.org/10.1210/jc.2013-2835
Solli, G. S., Sandbakk, S. B., Noordhof, D. A., Ihalainen, J. K., & Sandbakk, Ø. (2020). Changes in Self-Reported Physical Fitness, Performance, and Side Effects Across the Phases of the Menstrual Cycle Among Competitive Endurance Athletes. International Journal of Sports Physiology and Performance, 15(9), 1324–1333. https://doi.org/10.1123/ijspp.2019-0616
Sondheimer, S. J. (2008). Oral contraceptives: Mechanism of action, dosing, safety, and efficacy. Cutis, 81(1 Suppl), 19–22.
Sung, E.-S., Han, A., Hinrichs, T., Vorgerd, M., & Platen, P. (2022). Effects of oral contraceptive use on muscle strength, muscle thickness, and fiber size and composition in young women undergoing 12 weeks of strength training: a cohort study. BMC Women’s Health, 22(1). https://doi.org/10.1186/s12905-022-01740-y
Suuronen, J., Sjöblom, S., Tuppurainen, M., Honkanen, R., Rikkonen, T., Kröger, H., & Sirola, J. (2019). Effects of ethinyl estradiol-containing oral contraception and other factors on body composition and muscle strength among young healthy females in Finland—A cross-sectional study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 232, 75–81. https://doi.org/10.1016/j.ejogrb.2018.11.015
Suzuki, D., & Suzuki, Y. (n.d.). Identifying and Analyzing Low Energy Availability in Athletes: The Role of Biomarkers and Red Blood Cell Turnover. Nutrients, 16(14), 2273. https://doi.org/10.3390/nu16142273
Teal, S., & Edelman, A. (2021). Contraception Selection, Effectiveness, and Adverse Effects. JAMA, 326(24), 2507. https://doi.org/10.1001/jama.2021.21392
Torres, M. J., Kew, K. A., Ryan, T. E., Pennington, E. R., Lin, C.-T., Buddo, K. A., Fix, A. M., Smith, C. A., Gilliam, L. A., Karvinen, S., Lowe, D. A., Spangenburg, E. E., Zeczycki, T. N., Shaikh, S. R., & Neufer, P. D. (2018). 17β-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle. Cell Metabolism, 27(1), 167-179.e7. https://doi.org/10.1016/j.cmet.2017.10.003
Van Every, D. W., D’Souza, A. C., & Phillips, S. M. (2024). Hormones, Hypertrophy, and Hype: An Evidence-Guided Primer on Endogenous Endocrine Influences on Exercise-Induced Muscle Hypertrophy. Exercise and Sport Sciences Reviews, 52(4), 117–125. https://doi.org/10.1249/jes.0000000000000346
Wikström-Frisén, L. (2016). Training and hormones in physically active women: With and without oral contraceptive use.
Yang, X., Yang, C., Farberman, A., Rideout, T. C., de Lange, C. F. M., France, J., & Fan, M. Z. (2008). The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth1,2. Journal of Animal Science, 86(suppl_14), E36–E50. https://doi.org/10.2527/jas.2007-0567
Yoon, M.-S. (n.d.). mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00788

Citation

Funding Statement

No funding was used.

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles