Vladimir Galic, Department of Physiology, Medical faculty Novi Sad


Skeletal muscle is extremely adaptable to various stresses which can be placed upon it. In
spite of importance of skeletal muscles, little is known about genetic factors which demonstrate
high influence to muscle size, function, strength and adaptation to various environmental factors.
Because endurance performance is a multifactorial trait, the list of candidate genes which could
account for human variation in related phenotypes is extensive. One of the first characterized and
most frequently studied genetic variant is a polymorphism in the angiotensin converting enzyme
I gene. The ACTN3 gene is the first structural skeletal muscle gene with a relation between its
genotype and elite sprinter’ performance. Nevertheless, current genetic testing cannot provide an
extra advantage over existing testing methods in determining sports selection in young athletes.
The main challenge still remains to identify other, complex polygenetic variants and their
interactions with environmental factors which could provide benefit in the sports selection and
existing talent identification.

Keywords: exercise genomics, genetic polymorphism, muscle tissue


Barley, J., Blackwood A., & Carter N. (1994). Angiotensin-converting enzyme insertion/deletion
polymorphism: association with ethnic origin. Journal of Hypertension, 12, 955-957.
Baudin, B. (2002). New aspects on angiotensin-converting enzyme: from gene to disease.
Clinical Chemistry Laboratory Medicine, 40, 256-265.
Beggs, A. H., Byers, T. J., Knoll, J. H. (1992). Cloning and characterization of two human
skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. The Journal of
Biological Chemistry, 267, 9281-9288.
Blanchard, A., Ohanian, V., & Critchley, D. (1989). The structure and function of alpha-actinin.
Journal of Muscle Research and Cell Motility, 10, 280-289.
V. Galic
Bouchard, C., Bray, M. S., Hagberg, J. M., Perusse, L., Rankinen, T., & Roth, S. M. (2008). The
human gene map for performance and health-related fitness phenotypes: The 2006-2007
update. Medicine & Science in Sports & Exercise, 34-63.
Calvo, M., Rodas, G., Vallejo, M., Estruch, A., Arcas, A., & Javierre, C. et al. (2002).
Heritability of explosive power and anaerobic capacity in humans. European Journal of
Applied Physiology, 86, 218-225.
Danser, A. H., Schalekamp, M. A., Bax, W. A., Saxena, P. R., Riegger, G. A., & Schunkert, H.
(1995). Angiotensin-converting enzyme in the human heart. Effect of the
deletion/insertion polymorphism. Circulation, 92, 1387-1388.
Dixson, J.D., Forstner, M. J., Garcia, D. M.(2003). The alpha-actinin gene family: a revised
classification. Journal of Molecular Evolution, 56, 1-10.
Frederiksen, H., Bathum, L., Worm, C., Christensen, K., & Puggaard, L. (2003). ACE genotype
and physical training effects: a randomized study among elderly Danes. Aging Clinical
and Experimental Research, 15, 284-91.
Hagberg, J. M., Ferrell, R. E., McCole, S. D., Wilund, K. R., & Moore, G. E. (1998). VO2max is
associated with ACE genotype in postmenopausal women. Journal of Applied
Physiology, 85, 1842-1846.
Hamel, P., Simoneau, J. A., Lortie, G., Boulay, M. R., & Bouchard, C. (1986). Heredity and
muscle adaptation to endurance training. Medicine & Science in Sports & Exercise, 18,
MacArthur, D. G., & North, K. N. (2004). Genes and elite athletes. Chemistry in Australia.
Retrieved Jan. 10, 2005 from
MacArthur, D. G., & North, K. N. (2005). Genes and human elite athletic performance. Human
Genetics, 116, 331-339.
MacArthur, D. G., & North, K. N. (2007). ACTN3: A genetic influence on muscle function and
athletic performance. Exercise Sport Science Review, 35, 30-34.
MacArthur, D. G., Seto, J. T., Raftery, J. M. (2007). Loss of ACTN3 gene function alters mouse
muscle metabolism and shows evidence of positive selection in humans. Nature Genetics,
39, 1261-1265.
Mills, M., Yang, N., & Weinberger, R. (2001). Differential expression of the actin-binding
proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of
functional redundancy. Human Molecular Genetics, 10, 1335-1346.
Montgomery, H. E, Clarkson, P., & Barnard, M. (1999). Angiotensin-converting enzyme gene
insertion/deletion polymorphism and response to physical training. Lancet, 353, 541-545.
Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C. et al.
(1998). Human gene for physical performance. Nature, 393, 221-222.
Myerson, S., Hemingway, S., Martin, J., Humphries, S., & Montgomery, S. (1999). Human
angiotensin I-converting enzyme gene and endurance performance. Journal of Applied
Physiology, 87, 1313-1316.
Niemi, A., & Majamaa, K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite
endurance and sprint athletes. European Journal of Human Genetics, 13, 797-801.
North, K. N., Yang, N., & Wattanasirichaigoon, D. (1999). A common nonsense mutation results
in alpha-actinin-3 deficiency in the general population. Nature Genetics, 21, 353-354.
Exercise genomics
Pescatello, L. S., Kostek, M. A., Gordish-Dressman, H., Thompson, P. D., Seip, R. L., Price, T.
B. et al. (2006). ACE ID genotype and the muscle strength and size response to unilateral
resistance training. Medicine & Science in Sports & Exercise, 1074-1083.
Rankinen, T., Wolfarth, B., Simoneau, J. A., Maier-Lenz, D., Rauramaa, R., Rivera, M. A. et al.
(2000). No association between the angiotensin-converting enzyme ID polymorphism
and elite endurance athlete status. Journal of Applied Physiology, 88, 1571-1575.
Rankinen, T,, Perusse, L., Gagnon, J., Chagnon, Y. C., Leon, A. S., Skinner, J. S., Wilmore, J. H.
(2000). Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the
HERITAGE Family Study. Journal of Applied Physiology, 88, 1029-1035.
Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., & Soubrier, F. (1990). An
insertion/deletion polymorphism in the angiotensin-converting enzyme gene accounting
for half the variance of serum enzyme levels. Journal of Clinical Investigtion, 86, 1343-
Simoneau, J. A., & Bouchard, C. (1995). Genetic determinism of fiber type proportion in human
skeletal muscle. Faseb Journal, 9, 1091-1095.
Virel, A ., & Backman, L. (2004). Molecular evolution and structure of alpha-actinin. Molecular
Biology and Evolution, 21, 1024-1031.
Williams, A. G., Dhamrait, S. S., Wootton, P. T. E. (2004). Bradykinin receptor gene variant and
human physical performance. Journal of Applied Physiology, 96, 938-942.
Williams, A. G., Day, S. H., Folland, J. P., Gohlke, P., Dhanrait, S., & Montgomery, H. E.
(2005). Circulating angiotensin converting enzyme activity is correlated with muscle
strength. Medicine & Science in Sports & Exercise, 37, 944-948.
Woods, D., Hickman, M., Jamshidi, Y., Brull, D., Vassiliou, V., Jones, A. et al. (2001). Elite
swimmers and the D allele of the ACE I/D polymorphism. Human Genetics, 108, 230-
Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., & Easteal, S. et al. (2003).
ACTN3 genotype is associated with human elite athletic performance. American Journal
of Human Genetics, 73, 627-631.
Zhang, B., Tanaka, H., Shono, N., Miura, S., Kiyonaga, A., Shindo, M. et al. (2003). The I allele
of the angiotensin-converting enzyme gene is associated with an increased percentage of
slow-twitch type I fibers in human skeletal muscle. Clinical Genetics, 63, 139-144.
Submitted 12 April, 2011
Accepted 20 May, 2011